1 apr 2010
Sensors 2010, 10(3), 1967-1985; doi:10.3390/s100301967
George P. Petropoulos 1,2,*
, Krishna Prasad Vadrevu 3
, Gavriil Xanthopoulos 4
, George Karantounias 5
and Marko Scholze 1 





1 Department of Earth Sciences, University of Bristol, Queens Road, BS8 1RJ, Bristol, UK
2 InfoCosmos, Pindou 71, 13341, Athens, Greece
3 Agroecosystem Management Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
4 National Agricultural Research Foundation, Institute of Mediterranean Forest Ecosystems and Forest Products Technology, Terma Alkmanos, Ilisia, 11528 Athens, Greece
5 Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
2 InfoCosmos, Pindou 71, 13341, Athens, Greece
3 Agroecosystem Management Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
4 National Agricultural Research Foundation, Institute of Mediterranean Forest Ecosystems and Forest Products Technology, Terma Alkmanos, Ilisia, 11528 Athens, Greece
5 Department of Natural Resources Development and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
* Author to whom correspondence should be addressed.
Received: 18 December 2009; in revised form: 20 January 2010 / Accepted: 4 February 2010 / Published: 11 March 2010
(This article belongs to the Section Remote Sensors)

Abstract: Satellite remote sensing, with its unique synoptic coverage capabilities, can provide accurate and immediately valuable information on fire analysis and post-fire assessment, including estimation of burnt areas. In this study the potential for burnt area mapping of the combined use of Artificial Neural Network (ANN) and Spectral Angle Mapper (SAM) classifiers with Landsat TM satellite imagery was evaluated in a Mediterranean setting. As a case study one of the most catastrophic forest fires, which occurred near the capital of Greece during the summer of 2007, was used. The accuracy of the two algorithms in delineating the burnt area from the Landsat TM imagery, acquired shortly after the fire suppression, was determined by the classification accuracy results of the produced thematic maps. In addition, the derived burnt area estimates from the two classifiers were compared with independent estimates available for the study region, obtained from the analysis of higher spatial resolution satellite data. In terms of the overall classification accuracy, ANN outperformed (overall accuracy 90.29%, Kappa coefficient 0.878) the SAM classifier (overall accuracy 83.82%, Kappa coefficient 0.795). Total burnt area estimates from the two classifiers were found also to be in close agreement with the other available estimates for the study region, with a mean absolute percentage difference of ~1% for ANN and ~6.5% for SAM. The study demonstrates the potential of the examined here algorithms in detecting burnt areas in a typical Mediterranean setting.
Iscriviti a:
Commenti sul post (Atom)
Subscribe via email
About Me
- Marcos Giongo
- giongo@uft.edu.br
Etichette
- Amazon Rainforest (32)
- Articles (17)
- Bolsas / Becas (9)
- Books (28)
- Carbono (6)
- Cellulose/Paper (26)
- Climate (10)
- Cursos (6)
- Ecological zones (3)
- Energy (1)
- Estatisticas (31)
- Events (32)
- Exotic Forest (3)
- Fire (8)
- Forest (44)
- Informaçoes (52)
- Inventario Florestal (16)
- Legislação (6)
- LiDAR (7)
- Maps (2)
- Mercado (32)
- National Inventory (12)
- News (124)
- Oportunidades / Opportunities (18)
- Programas (3)
- Protected area (5)
- Remote sensing (11)
- Report (5)
- Tecnologia Florestal (3)
- Water (4)
- Wood - Based Panels (3)
0 comentários:
Posta un commento